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We extend our method of systematic removal of secular terms in a singular per- 
turbation treatment of the Boltzmann equation with small Knudsen numbers to 
the initial layer. The requirement that the solution through the initial layer 
should connect smoothly to the normal solution removes an ambiguity noted in 
our previous paper. We show that removal of secular terms improves Grad's 
solution for the initial layer and reintroduces soundlike modes associated with 
higher moments, first found by Wang Chang and Uhlenbeck. 

KEY WORDS: Boltzmann equation; "initial layer"; relaxation; singular per- 
turbation. 

1, I N T R O D U C T I O N  

O u r  previous  p a p e r  ~1) was devo ted  to a d iscuss ion of  the n o r m a l  so lu t ion  
of  the Bo l t zmann  equa t ion  (B.E.) with small  K n u d s e n  number .  Tha t  
so lu t ion  canno t  be used to s tudy  the re laxa t ion  behav io r  in the init ial  layer,  
the b o u n d a r y  layer,  and  the shock wave layer. In  the present  paper ,  the 
init ial  layer  so lu t ion  will be discussed in detail .  We  again,  for s implici ty,  
consider  only  the case of  p l a n a r  geometry .  The m e t h o d  can be general ized 
to more  compl ica ted  geometr ies  wi thout  essential  difficulties. 

In  Ref. 1 we found that  the F o u r i e r  t r ans form in veloci ty space of the 
B.E. for the case of p l a n a r  geomet ry  can be wri t ten  as 

8(/9 •2(p + i ( 1 _ ~ 2 )  02~p 1 
. . . .  J(~o, v,) (1) 
~3t + i# ~ k ~3# 0x e 
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where the generat ing function 

~p = ~o(x, k, #, t) (2) 

is the Four ier  t ransform of the dis tr ibut ion function f(x, v, v, t), and 

J(q~, ~p,)= I dh' dk' g([c" it', k') {qg, I~ ([c + ~t')- k'l  ~p [~ ([c- ~') + k' 1 

-- CPl(k - k') r (3) 

We use the same nota t ion  as that  of Ref. 1 throughout .  
We write the initial value for the generat ing funct ion ~o as 

~p(t = 0) = Po exp [  -�89 - iktxco](1 + ~9o) (4) 

po = p (x ,  o), Co = c(x,  o), Oo = O(x, o) 

~ o = ~ ( ~  0 ) e , ~ , ~ , ~ , ,  ( n , l ) = ( 2 , 2 ) , ( 3 , 1 )  .... 
nl  

(5) 

( - i k )  ~ 
enl - - -  Pt(/x), n = 0, 1,...; 

n? 

Here  the quanti t ies ent are defined as 

and Pz(#) are Legendre  polynomials .  We stressed in Ref. 1 that  the e,t are 
eigenfunctions of the linearlized collision opera tor ,  and  that  the normal  
solution 

~Pn = q9o[-1 + r k,/x, t ) ]  

satisfies the B.E. (1) 

acp~ . ~32~0,, i(1 - - / t  2) ~32q3._.& l j(~p~, r (8) 

(7) 

but  it does not  satisfy the initial conduct ion  (4) in general. 
Assuming that  the solution of Eq. (1) with the initial condit ion (4) 

consists of two parts  

~P = r + q~i (9) 

where 

l=n,n-2,...,1, or 0 (6) 
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where ~0, is the normal solution obtained in Ref. 1, we obtain from 
Eqs. (1), (8), and (9) that ~pi must satisfy the following equation: 

~@i ~2@i i(1--/~2) ~2@i 
0--7 + itz O-T-aTx -~ k a,u Ox 

l 
= - [J((,o,, ~p,,) + J((Pn, P i )  + J(qo;, (p,) ]  1o) 

and the initial condition 

~o,(t = 0)  = ~0(t = 0)  - e . ( f  = 0)  11) 

In addition, ~Pi should satisfy 

q~i(t --' 0 o ) = 0  12) 

which guarantees that q becomes the normal solution %, outside the initial 
layer. We shall call qi the initial layer solution. 

The initial layer solution and its connection to the normal solution 
was discussed by Grad, ~2) using the moment method. Surprisingly, he did 
not find the soundlike modes pointed out already by Wang Chang and 
Uhlenbeck ~4) to be associated with higer moments. These are sufficiently 
strongly damped that their physical significance is doubtful, but the con- 
ceptual discrepancy between Wang Chang and Uhlenbeck's work and that 
of Grad remains. In this paper we shall resolve this conflict: Grad's expan- 
sion will be shown to contain secular terms. When those terms are 
removed, the soundlike modes reappear. 

Also, the ambiguity in the coefficients of the power expansions in 
Ref. 1 of the hydrodynamic variables is removed. We shall show that the 
initial layer solution can only connect smoothly to a normal solution in 
which the hydrodynamic variables are expanded in powers of g, and with 
properly adjusted coefficients. If the hydrodynamic fields are expanded in 
powers of e Nq-l= ~2 secular terms appear in the initial layer solution. This 
demonstrates the superiority of the expansion method of Ref. 1 over that 
proposed by Cercignani. ~5) 

Write the initial layer solution as 

(pi=CPoO (13) 

where q~o is given in Ref. 1 as follows: 

qo -= p(x, t)expE-�89 t ) -  ik#c(x, t)] (]4) 
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and 

0 = 0( x, k, ~, t) 

From Eqs. (10) and (11) one finds that 

Ding and Huang 

a ~-t - PI(O )= PJ'(O, O ) + P ~ eJ[J'(O, ~u)) + j,(~u), 0)] 
j = l  

- ~ [ D o 0  + D, (0 )  + D2(0)]  

v"[t'(~ ~" 0)]  e,; 0(t  = 0) = L I U . l ,  0 ) -  ~i,u~,~ 
nl  L j = l  

(15) 

(16) 

Let 

aO/at ~ 0(1/~) 

which shows the rapid evolution of 0. In view of this, we introduce a new 
time scale 

and rewrite Eq. (15) as 

00 

= t/e (17) 

---PI(O)=PJ'(O, O)+P ~ aJ[J'(O, Cu))+j , (~u),  0)3 
j = l  

- a [Do0 + D~(0) + D2(0)]  

Assume that 

j = 0  j = 0  nl  

It is seen from Eqs. (5) and (19) that 

0(~ = o) = 00 

a~ j %  

(18) 

(19) 

(20) 

where the symbols I(0), J ' (0,  01), ~(i), Do, D1(0), D2(0), and ,~u) were U n l  

defined in Ref. 1. 
C0) X In general, all the b~t ( , 0) do not vanish, so we have 0 ( t = 0 ) ~  O(I). 

It is seen from Eq. (15) that 
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and 

cTb(,~)( x, ~)_ ~ oitc(j,i) (21) 
~'C ~ IJ nl 

i = 0  

where e,z~(J'~) depend on p, c, 0, and b(,~) (with k < j  and with k = j  in the case 
n' <n )  and their space derivatives. Making use of Eqs. (19) (21), we get 

O'E / j  t - i=O 

For Maxwell molecules, Eq. (18) reduces to 

(22) 

00 
~'c p lM(O)=PJM(O'  O)+  P ~' eJ[JM(O, ~(J))+JM(~- (j), 0)]  

j = l  

-- ~ [ D o 0  + D~(~)  + Dz(~h)] (23) 

We shall consider mainly Maxwell molecules. 

2. T H E  D O M I N A N T  T E R M S  OF T H E  " I N I T I A L  LAYER'" 
S O L U T I O N  

Substituting Eqs. (19) and (22) into Eq. (23), we find that the e~ 
approximation to Eq. (23) is 

<) - ~  o - plM(O(~ = pj~((p(o), 0(o)) (24) 

Equating the coefficients of e.r on both sides of the above equation, we 
obtain 

where 

fl(o,o) + 2.tpb(O)= R(O) 
nl (25) 

R(O) (26) V h(o) h(o) ]an'l'n"l" 
nt =P  z., Vn,l. Un.l , , ,~Mn 1 

n'l'n"l" 

and the coefficients h,'t',,"r' have been defined in Ref. 1. "~Mnl 

It should be noticed that R(, ~ depends only on b(,~ for n' < n because of 
l.(0) from Eq. (25) the properties of-M,th"t""r" Hence, we may determine all u,l 

n(o,0) have been defined. In fact, the form of Eq. (25) one by one as long as ~-,t 
is quite similar to that of the moment equations of the B.E. for Maxwell 
molecules in the spatially homogeneous case, where one can evaluate the 
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time evolution of subsequent moments by solving ordinary differential 
equations. (6) If we retain only the first term on the right-hand side of 
Eq. (21), we find that Eq. (25) is exactly the spatially homogeneous B.E. 

3. T H E  E - O R D E R  A P P R O X I M A T I O N  

The e-order approximation to Eq. (23) is 

~-~ )i- P/M(~(1) ,--(0) ~t(O))] = P[-JM[~ , ~/(1)) + jM(I//,--(1), 

+ p[ jM(~(o)  ~(l)) + jM(~(1), ~t(o))] 

- rDoo~#O~ + D l ( ~  ~~ + D~(~,(~ (27) 

Equating the coefficients of e~r on both sides of the above equation, we 
obtain 

where 

f l ( 1 , o )  _ taoJ) + 2,tpb(n~) 
n l  ~ h ' n l  

~t.(o) 
n( l+ )0  ~b(n~ cU~'l 
2l + 3 3x Ox 

(n l + 2 ) l  ~(o) 
- -  U U n + I , I  1 ~_ ~[(1) (28) 

P" n l (n + 1 )(2l - 1 ) 0x 

n l  n ' l ' \  n " l "  ~ n " l " l  " ~ M n l  

n ' l ' n ' l "  

3,, 

l ( 1 - ! )  - b , 0 ,  
--n(n-- 1) O~xx L ( 2 l -  1 ) ( 2 l -  3) . . . . .  = 

l + 1  \ 
+ - -  b (o) / 

1 2 l + 3  n 3,l+lj 

21(l + 1 ) b(O) 
3(21 -1 ) (21+3)  n 2,, 

( l+  1 ) ( l+2)  ~.(o, ] 
(2l---+ 3)(2l-----+ 5) ~'a = 2,~+ 2J 

__ n / O  0h(nO-) 1,,--1 F/ 00 [ l ( n  - -  l) b(0) 
2 1 - t  •x 2 0 x k 2 1 - 1  n- l , l - I  
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(l + 1 )(n + l + 1 ) b((~ ) ] 
-t - 2 / + 3  - l , t +  t 

8c f (n - l+2) (1-  1) 
ex ~ 7~/-~)(-5}-z- 3) l<,?_~ 
[(_~/ - -1)(1+ 1) 2 ( f l+l+ 1) 12 ]b (0  ) 

+ +1) (21+3)+(2 l_ l ) (21+1) j  ~, 

(l+2)(l+l)(n+l+3)b(~ } 
-~ (2 l+  3)(2l + 5) ,,,+2 

(n- l+2)  l 18pb(o , 
( n + l ) ( 2 1 - 1 ) p O x  "+~'~-~ 

( l +  l ) ( n + l + 3 )  1 8 
- ,-(o) ) (29) 

( n + 1 ) ( 2 l + 3 )  p~xtPV~+~J+ 

If one puts ~-mn(~ which is equivalent to Grad 's  expansion, the 
r ight-hand side of Eq. (28) may  be considered as the inhomogeneous  terms 
of the differential equat ion for b(~ ) Considering z,(o) e ~"~P~, �9 ~ ~ we know that 
the r ight-hand side of Eq. (28) will contain a term 

~(o) 8p 
- - C  ~ n l  ~ . , , [ ~ n l  c e - 2 n l P  ~: 

Ox 

and t,(1) w i l l  c o n t a i n  a term U nl 

At the next step ~(2) will contain a term 'J nl 

)~nl C e -- 2nlPV 
2 4 ~ ox/ 

and it can easily be inferred that  b(~j ) will contain 

~2j / .  @5/ 
(2j)![ (,%,C-~x) e -)"'p~ 

which leads to a secular term. In fact, the sum of those terms is 

exp (-- 2,aP~ + ~ s2ntC ~x T2 ) 



596 Ding and Huang 

Clearly, the absolute value of the second term in the exponent will be 
larger than that of the first when ~ is large enough. In order to remove such 
secular terms, we have to choose mo,~) carefully. V nl 

In the case l r  0 and 1, we may put 

fl(o,l) 8b~O)/Ox (30) nl ~ - -C  

(31) 

where 

8b (~ ( n - l + 2 )  l c~b (~ n ( l + l )  0 ~-t, /+l  n + l , t - l . g ( 1 )  (32) 
R(~) = 2l + ~  0x (n + 1 )(2l - 1 ) ~x - enl 

If l =  0 or 1, n >~ 4, degeneracy occurs: 

2 n , 0  = /~n 1,1 (33) 

We may put 

c~b (~ n 8b (~ n 00 
]~(0,1) __ n,0 0 n - - l , 1  b(O) (34) 

. ,o - - c  ? x  3 8 x  6 (~x n 1,1 

Oh(n~ 1,1 
f l (o ,1)  n -  1,1 ~ - - C  

Ox 
~b '~ 1 (~0+ ~0)b,o , 

n,O C ~ x  x t ]  n - -  1,1 (35) 
~x 202~ t  

The last terms in the above equations are introduced for convenience in 
solving b(.,~ ) and b(~~ ~ (see below). From Eqs. (28), (34), and (35) we 
obtain 

f l ( • , o l  • 2 ~b (1)- R (11 n,O = n,OH n , O - -  n,0 (36) 

fl(~,o) + 2.,opb(1) 1,1 = R(1) (37) n -- 1,1 -- 1,1 

where 

R ( 1 ) _ n ~ O b ( o )  _1_ 7~(1) 
n,O - -  6 8 X  n -  1 , 1  - -  /~n,O (38) 

R~.'~1,1- ~ --b-U-x + \ a t  ~x -1., 
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4. HIGHER ORDER A P P R O X I M A T I O N S  

The higher order approximation to Eq. (23) is (j~> 2) 

( ~ t ) / - - p l M ( ~  <j)) 

j 1 
=p ~ [jM(r ~(j--i))+ j M ( ~ ( j : i )  ~ j ( i ) ) ]  

i - O  

J 

+P ~ JM(r "), r +))_ [Do10 (+ 2 ) + D o o 0 ( J - 1 )  
/ =o  

+ Dl(~9(/- 1)) + D2(0(/- 1))] (40) 

the e.+ component of which is 

J 

i =0  

_ _ (  ) ~h(J-- l) 
_ n _ l + l -  0 ~= 1,++1 

C - -  
2l + 3 Ox Ox 

( n - l + 2 )  l Ob (j 1) __ n + 1 , l - -  1 ~ ~ ( j )  
I-+ nl (n + 1 )(2l-- 1 ) Ox 

where 
j l 

~(Y) 2 p  Z Z ] ~ ( i ) . ( j  i)~n'l'n"l" 
nl = ~n' l '~n"l  . . . .  Mnl 

i = 0 n'l'n"l" 

J 
~-~ V ~(J) ~ ( J -  i)~n'l'n"," + P Un'l'~n"l" "'Mnl 

i = 0 n'l'n"l" 

I / ] 3 ( j _  2 I+1 b(j_ 2) ] 1 
- n q l  ~= 1,t-1+2l+3 = -1 ' t+ l J -2  n(n-l~-)~l~'n/'(j 2.+2) 

2 OOF l (j 1) l + l  bU 1) ] 
l n ( n - 1 ) (  " -  ) 0 ~ [2-7-~_1bo--3.,-1+ 2-7- ~ o--,,,+ l J 2 

Oc V l ( l -  1) b(j-1) + 2l(l+ 1) =ci-1) 
- n(n - 1 ) 0 7 x  t_ (21 - 1 ) ( 2 l  - 3 ) " -  2 ,+-~  3 ( 2 t  - 1 ) ( 2 t  + 3 ) ~= - ~'~ 

( l+1) ( l+2)  b~j 2.++~] 
+ (2l+3)(2l+5)  ( ~) ~ 

Ob(/- 1) n ~0 ~l(n - l) b( j 1) In 0 ~-  l,Z- 1 
2 l - 1  t?x 2 8 x L 2 1 - 1  ~-1,+-1 

(41) 

822/45/3-4-16 
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( l+  1)(n + l +  1) bgj 1~]+ ~] 
-~ 2 l+  3 

Oc ~ ( n - l + 2 ) ( 1 - 1 ) l . . .  ~, 
_ _ _ _  Or+- J 

ax [ (2---~---i)(21-- 3) .,,-2 

) 12 (n -O(1+  1)= ( n + 1 + 1  . . . .  ] b ' J - "  
+ L(2--Tg T ~  + g-) + (21- 1)(2l+ 1)J "' 

(l+ 2)(1+ 1)(n + 1+ 3) b(jg~)); 
-+ (2l+ 3)(21+ 5) 

( n - l + 2 )  l 1 8p b(j+_tL,]_ 
-- (;, + ~ i : - - - 1 )  p ~x 1 

( l +  l ) ( n + t +  3) 1 
( n h ( J  1) "l 

( n + 1 ) ( 2 l + 3 )  pOxtVV"+l't+~' 

In order to remove secular terms, we put 

fl(O,J)--R(1,j - l )  . . .  = R ( J  2,2)-- 0 
n/  - -  l"  n l  ~ P 'n l  - -  

In addition, we put 

f l ( j  1 , 1 ) _ _  _ _ C  O b n l  (~ 
1) 

nl  - -  ~ X  

fl(j,o) . 2. tpb(})  = R(~) nl  E 

R ( j )  - -  
n l  

_ _  Ob(,/ i) l ( n - l + 2 )  n ( l +  l )  0 . 1,++1 
21+ 3 Ox (n + 1) (2 l -  1) 

(42) 

(43) 

(44) 

(45) 

0 b  (nJ-li '/J-- 1 ~ ( J )  ( 4 6 )  

for l r  0 and 1; and put 

Ob(i u Ob(J -11~  nOO b ( j _ l  ) f l} , , j  1 , 1 ) =  - - C  n,0 /'/ 0 
~x 3 Ox g ~x " 1,1 

fl ( j -  1,1) _ - - c  - -  
n 1,1 - -  

3b(j 1) b(j- 1) n - -  1,1 n,0 

Ox 8 x  
1 / ~ 0  00"~ b(fll _1) 

2o( +Cyx) _1,1 

f l ( j , 0 )  + ,]  o ] ~ ( j )  __ R ( j )  
n,0 z~n0 ~ ' u n O  - -  

fl(s,o) + 2nopb(J) _ R(s) n 1,1 1,1 - -  n -- 1,1 

(47) 

(48) 

(49) 

(50) 
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for 1= 0 or 1, n ~> 4, where 

R(j) _ n 00 b(j_ 1) ..L ]'~(J) 
n , O - - 6 ~ X  n - - l , , ' V n , O  

2(n -- 1 ) 
R~J-) 1'1 - 5 

Thus, Eq. (21) becomes 

- -  P ' n l  t OlJ  n l  
Ot 

which is an exact equation for ~,(~) ~ n l  " 

O h ( J - 1 )  L ( 0 0  0 0 )  h ( j _  1 ) +  ]~(nj) 
- - 0  , ,-z,2+ + C ~ x  ~,,-1,1 ~x 20 \ 0 t  "~ 

(51) 

j = 0, 1,... (52) 

Solving Eq. (52) is not very difficult. If l # 0  and 1, Eq. (52) becomes 

0~ ~-ec(x, Ox t- 2nlP(X, v~ ~l ~ , z) - ~-,t (53) 

The characteristic curves of Eq. (53) are determined by 

dx/dr=ec(x, ~) (54) 

Denoting x(r  = 0 ) =  Xo, we obtain from Eq. (54) that x = X(Xo, ~) for a 
given xo, and the inverse function x0 = Xo(X, ~) follows. Hence, the solution 
of Eq. (53) is 

~lh(mx, , ~) = b~)(xo, O) e ~nl+ e-~.t e~'~R~)(X(Xo, ~'), ~') & '  (55) 

where 

;o v.~(Xo, r) =.~., p(X(Xo, <), <) &' (56) 

7;t--7.t(Xo, < ) = ~ t  p(X(Xo, <% <') &" (57) 

If l =  0 or 1, n >~ 4, Eq. (52) becomes 

Ob(J) Ob(nQ 1,1 , en 00 Ob(~~ ~- ~c ~,o + 3 b(J) (J) - R(:) O"r -~x O"-'~X. t - ' ~  x n- ,A + )~,~opbno - - ~ , o  (58a) 

o r  

n -- l , ,  _~_ ~C 1,, _~ ~ ~n,O 
0~ Ox Ox 

• a~ 
+ 20\ot+C-~xxx n- - l , '  , 1,1 

(58b) 
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Denoting 

b ( . ~ )  - t , ( J )  _ ~ , ( J )  -- - -  ~nO ~ n  -- 1,1 b (J)n + -- ~ (J) -{- b (J)- 1,1 

we can rewrite Eqs. (58) as two independent equations: 

c~b(nJ)- I (nO3 ) l/2] ~b(. j)- 
8------~ + a c - ~ + 2.opb(.4 = R t j  )_ 

8/'(J) [ (~ )~ /2 ]  ~b(j) ~n_.~+ _ n+ ,,~ ~t)b(j ) = R(j) ~-~ c +  ~ +  . . . .  + .+ 
& ux 

(59) 

(60) 

(61) 

where 

R(j) ~_ R(Jo) _ (nO~l/2 e(j) 
- \ 3 1  " - ~ ' ~ '  

R~ ) = R(jo~ + ( ? )  '/2 R ( J ) -  1,1 ( 6 2 )  

Equations (60) and (61) can be solved exactly in a way similar to solving 
Eq. (53). The characteristic curves of Eq. (60) are given by 

d x ( x o ' T )  I Qn~O3)l/21 = e  c -  X ( X o , O ) = x  o (63) 
dz 

If x o = Xo(X ,  ~) is determined from the solution of Eq. (63), the solution of 
Eq. (60) will be 

where 
f 0  ' 

b ( J ) = b ~ J ) ( x o , O ) e - ~ , - + e  -~"- e ~. R ~ J ) ( x ( x o , z ' ) , v ' ) d z '  (64) 

fo ~, =2,0 p ( x ( x  o ,  ~:'), z ' )  & '  (65) 

fo' z")  dr" 7'. -= 7.-(Xo, ~') = 2.0 P ( X ( X o , ~ " ) ,  (66) 

The characteristic curves of Eq. (62) are given by 

dz = ~  c +  , x ( x ~ , O ) = x  + (67) 

If x~- = x~-(x0, z) is determined from the solution of Eq. (67), the solution 
of Eq. (61) will be 

t,(J) = h(J) t, .+ O) e -s~ + e -~"+ e~',+R (j) t x t x  + , z'), z') dz' Vn+ Un+~O ~ n+\ \ 0 (68) 
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where 

7~+ = 2~0 p(x(x~-, ~'), ~') oh' (69) 

' + ' " (70) ~.+-~+(Xo,~)=&o p(x(x~,~ ),~")&" 

Finally, we obtain from Eqs. (59) that 

b(j ,_ 1 (b( ~ + h(J)), b(J) 1 ( 3 "~ 1/2 (/l(J) - -b (nJ ) )  (71) 
n , O - - 2  ~n+ n--1,1 = 5 lkn-0/  , ~ n +  -- 

It is very easy to see from Eqs. (63) and (67) that the high-moment 
sound waves do appear in a Maxwell gas and propagate with speed 
(nO~3) 1/2. But they decay very rapidly because of 

2,o = 2~ 1.1>0 

This fact was noticed by Wang Chang and Uhlenbeck. (4) As mentioned in 
the introduction, in Grad's solution the high-moment sound waves were 
missed, because the secular terms were not removed. 

5. T H E  C O N N E C T I O N  W I T H  T H E  N O R M A L  S O L U T I O N  

According to Eq. (12), we know that b~ ) should satisfy 

lim b(J)(x, r) = 0 n l  
v ~ o o  

(72) 

It is evident that Eq. (72) is satisfied for (n, I) = (2, 2), (3, 1),..., because of 
the factor e x p ( - 2 ~ ; p  dr'). It is seen from Eqs. (16) and (19) that 

b(J)tx 0) = - - ( r e x  0), (n, l )=  (0, 0), (1, 1),...; j =  1, 2,... (73) n l  ~ ' ~ n l  k 

The initial values of p, c, and 0 are given in the normal solution. As soon 
as values of ~,(mx 0) for (n, l) = (0, 0), (1, 1), (2, 0) are given, that of all ~ n l  ~ 

other -,,t"(J)~"t~, 0) will be defined as explained in Ref. 1, and b(~j)(x, 0) for 
(n, l )=  (2, 2), (3, 1),..., will be determined by Eq. (73). 

The situation is different for the first three moments (n , / )=  (0, 0), 
(1, 1), (2, 0). Let us consider Eq. (28) as an example. In view of 

200 = /~11 = ~'20 ~" 0 

the secular term would appear ir t~(1,o) contained a term without any factor l ~  V n l  

like e x p ( - 2  S; P &')" (For instance, if enzt~(l'~ contained a term that remained 
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constant, b(~ ) would contain a term proportional to z.) But the right-hand 
side of Eq. (28) has no such term, so we may put 

fl (O,1) __ /~(0,1) ]~I0,1) .~ O 
O0 - -  / " 1 1  

(74) 

Similarly, we may retain Eq. (43) and put 

/~(0 j -  1,1) __.~ ] ~ j - -  1,1) -'~ /"20/~(J--1,1) ___~ 0 ,  j =  1, 2,... (75) 

Then Eq. (21) becomes 

3 h ( J )  
~ nl t~o,o) (n,/1 = (0, 0), (1, 1), (2, 01; j = 0 , 1  .... (76) Hnl 63r 

In the case j = 0 ,  we know from Eq. (5) that ~oo~'(~ 0)=b~0)(x, 0 ) =  
b(~ 0)=0 .  We obtain from Eqs. (25) and (76) that 20 k ~ 

b(~ z )=0 ,  (n, l) = (0, 0), (1, 1), (2, 0) nl ~ , (77) 

In the case j =  1, in virtue of Eqs. (28) and (75), we may write Eq. (76) as 

~r ~r p a x  ~" 22 

63b~ l) - 5  63 2#c 
63r = 9p --Ox (Pb~~ - -3 --Ox ~22h(~ 

(78) 

Hence, using Eqs. (78) and (73), we get 

b~)(x,  r ) =  -, ,( ')~ ; O) wOO ~,~, 

b]])(x, r)= -a~l,)(x, O ) - f / 1  63 p ~x (Pb~~ dr' (79) 

fi 2Io 63c b~ r)= - - a ( 1 ) [ x ,  0 ) - -  5 63 - 3  ~ x  ~'22 20 ~, 2o~ ~ ~x (pb(3~ d'c' h(o) dr' 

According to Eq. (72), we have to put 

a(l)~x 0 ) = 0  O0 k , 

fo ~ a?l)(X, o ) =  - p Yx (Pbl~ dr' (80) 

a(21o)(X, O)= ---~ -~x (Pb~~ d r ' - -  ~x b(2~ dr' 
o 
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In the case j~> 2, the procedure is similar. It is seen from Eqs. (41), (43), 
and (75) that 

c~b(o{) 1) 1 (~ ~(j,o) - c  - - - -  (pb~-1) )  
~oo = Ox p 8 x  

1 ~00 3x ~x b~{-~ 

10p ~)_1 0 
p ~x blj~ p Ox (pb(2{ l)) 

Q,O) 2 (~b~ j 1) ~b(2J- 1) 
fl:~ = - ~ 0  ~x c ~x 

2 00 
3 q~bl~ - 2 ) - s  i uooh(J-2)----b(J-lc~ x 11 

2c3c 5 c~ 

3 Ox 

(81) 

Hence we obtain that the solution of Eq. (76) under the condition (72) ~s 

fr ~176 ~(J)t,. z)  = - o(j.o) dr' 
~ n l  ~ P n [  

(n, l) = (0, 0), (1, 1), (2, 0); j = 2, 3 ..... 

and the initial value of ~,t'~(m"t~-, t) for (n, l) = (0, 0), (1, 1), (2, 0) is 

(82) 

(,oo 
(j) __ j /~(j,0) fJo-t a,, l (x, 0 ) -  e,t  -~ 

0 (a3) 

(n, / )=  (0, 0), (1, 1),(2,0); j = 2 , 3  .... 

We mentioned in Ref. 1 that several coefficients in the normal solution, 
(J) such as a , t ( x , O  ) for (n, /) = (0, 0), (1,1), (2, 0), j = t ,  2,3,..., remained 

undetermined. Now we find that these coefficients are determined by 
Eqs. (80) and (83) in order to satisfy the condition (72). In other words, if 
we take initial values ~ a(i)tx, t t , t) that do not agree with Eqs. (80) and (83), 
the solution (p will not tend to (p, outside the initial layer. This is another 
kind of secular term, which can cause the initial layer solution to be 
invalid. In order to avoid this type of secular term, we are forced to expand 
the hydrodynamic variables in a power series in e. In other words, we need 
the counterparts of ~o0~(J), .-~(J)11, and b(2{) ) ( j =  1, 2,...) in the normal solution. 
However, we cannot find the counterparts for j = 1, 3, 5,..., in Cercignani's 
expansion, since the hydrodynamic variables there are expanded in powers 
o f  22 even though each term is dependent on 2. As mentioned in the 
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introduction, this is the second difference between Cercignani's normal 
solution and that presented in Ref. 1. 

Finally, we summarize our procedure as follows: 

1. Find h(~ z), b~~ and b(~ ~) from Eqs. (77), and u 0 0  ', ' 2 0  ~, ' 

evaluate other b(~ ~) from Eqs. (55), (64), (68), and (71) for j = 0 .  n l  t , 

2. Evaluate b(o~o)(X, ~), b~l)(x, ~), and ~loh(l)txt , ~) from Eqs. (79), and 
other b(~p(x, ~) from Eqs. (55), (64), (68), and (71), and the initial values of 

,,(~)t,. t) from Eqs. (80) for j =  1. " q ' ( 1 ) [ X  t), a]~)(x, t), and ~20 \ ~ '  ~ 0 0  ~, 

3. Evaluate h(J)~,- r), b]~)(x, z), and ~=0t , ~o0t~, ~,(J)(x r) from Eqs. (82) and (81), 
other b(~{l(x, z) from Eqs. (55), (64), (68), and (71), and the initial values 
a(J)(x t), ,,(J)(x t), and ,,{J)tx t) from Eqs. (83) and (81) forj~>2. ~ 1 1  ~, ' O0 t, ~ ~ 2 0  \ 

4. Evaluate 

anz(x, t) ~ (J' t) l,(J,t,. # = [a,,  (x, + t)] 
j=0 

which determines the hydrodynamic variables, by the formulas given in 
Ref. 1. 

6. EXTENSION TO N O N - M A X W E L L  M O L E C U L E S  

The situation for non-Maxwell molecules is more complicated. The 
fact that in the preceding paragraphs we could work our way recursively 
through the initial layer to an arbitrary initial condition was due to the 
special simplifying features of the Maxwell model. In order to get explicit 
results for non-Maxwell molecules, we must restrict ourselves to initial con- 
ditions sufficiently close to a local Maxwell distribution that linearization 
makes sense. In that case, the discussion can be made quite similar to that 
above. 

The real, symmetric operator I in Eq. (18) can be diagonalized 

where 

I( dn,) = -An ,  dn, (84) 

( - ik ) 'c 
a n , =  ~ n,, _ - -  P , ( ~ )  (85)  D~l e.,t -- ~ D,~/ n'! 

n '  n '  

In general, the eigenvalues Ant and the eigenvectors dnt are dependent 
on 0. We know from Eqs. (111) in Ref. 1 that 

doo = eoo, dxl = e l l ,  d20 = e20, Aoo = Air =A20 = 0  (86) 
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All other eigenvalues A.~ > 0. We assume that there is no more degeneracy 
in the spectrum of the operator L 

Letting 

j = 0 j = 0 nl 

OB(J) __ /~(j,O) ~_ efl(j,l) (88)  
OT, i'-'nl nl 

we obtain from Eq. (18) that the d.z component of the a~ 
approximation is 

where H~,) r''r' 

f i (~~176176 ~ ~.,s,n(~176 H,,'s'.'r'_,,,,r,..,,t (89) 
tl'l'#l"[" 

are defined by 

1 
[J'(d,, ,r,  d~,,r,) + J'(d,,,,r,, d,,r) ] = ~, .14"'r""r', ,,, d~, (90) 

nl 

It is easy to get 

H " ' ~ " " ' "  = H ' ( U  '" = I 4 ~ U ' '  = O, u .  ,',,", - . . . . . .  oo ..  ,,~ - H ~ /  n z 

(91) 
H"r""r '=0  if [ l ' - l " r  > l  or l > l ' + t "  nl 

The d,,~ component of the a-order approximation to Eq. (18) is 

fl ( 1 , 0 )  j _  / ? ( 0 , 1 ) - L .  AntpB(~) 
nl ~ P n l  

rJ( 1 ! Lln'rn"r' = 2p ~ n(o)(~( l l  +o.,, , , ,)  
~ n ' l ' V l  n"l . . . .  n/  

n 'l'n "l" 

- -  [ d , , z ,  D i n 0  (~ --  C 0B}~ 
8x 

(92) 

where [d.t, 0 ]  denotes the coefficient of tint in 0, ~(1t denotes the coef- ~ n l  

ficient of d.t in ~(J), and 

6~ 0 2 i ( 1 - - / 2  2) 6~ 2 
D m = ' D ~ 1 7 6  ~---k~x+ k ~ # x  (93) 

The difference between the non-Maxwell gas and the Maxwell gas is 
that closed equations for ~(0~ cannot be obtained even though the LPn[ 

~[n ' l ' n  "l" expression of pnta(~ Eqs. (88) and (89) is determined, because the --.t 
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do not necessarily vanish when n < n' + n". But if the deviation of the initial 
distribution from a local Maxwellian distribution is small, for example, if 
0o is O(e), 

~,o = ~0o~ 

we can obtain from Eqs. (4) and (5) that 

O(~ = O) = 0 

I//(1)('C = O)  ~- ~tO, - -  ~ ( ' ) ( t  = O)  

O(J)(z = 0) = --~(J)(t = 0), j>~2 

Taking t~(o.x)_ 0, we get 
iJ  n l  - -  

and we get from Eq. (92) that 

Cm)=O (94) 

fi~},o) + A.zpB(~)= 0 (95) 

The d. l components of the U-order approximation to Eq. (18) forj~> 2 are 

fl(j,o)• (j- 0B(~-I) 
n l  " finl 1,1) _~_ A.~pB({) = - c  #x + o(i)~.,,i (96) 

where 

j 1 
R~{)-2P Z ~ n(~ ~lJ-i)H~iC~"r' 

- -  ~ n ' l " * n " l "  

i - -  1 n ' l ' n " l "  

j - - I  

+ p  ~ ~ nl,) n(J-ilH~'[,~"," 
~ n ' l '  U n " l "  

i = 1 n ' l ' n " l "  

- [d.,, DmO (j ')] - [d.,, DOlO (j--z)] 

In the case (n, l)4: (0, 0), (1, 1), (2, 0), letting 

~ R ( J  1) 
1,1) 

g - I ' l l  ?x 

fl(j,o) j_ AntpB({)  = R({) 
n l  " 

we obtain from Eq. (88) that 

aR~) 
& 

(•R(J) ~ n l  - -  + ec ~ + An,pB~{ ) = R~ ) 

(97) 

(98)  

(99) 

( l o o )  
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The solution of Eq. (100) is 

foe R.t(X(Xo, ),~')dt' (101) B(~ ) = B(.J)(xo, 0) e Y"~+ e ~'"~ "/;i (J) T t 

where 

?'.t= A.I p(x(Xo, ~'), ~') dt' 

, _~ r v , , )  d r , ,  ~ = ~.~(Xo, ~') = A,,~ p(X(Xo,  ~"), 
Jo 

Here Xo = Xo(X, r) is determined by the following equation: 

dx(xo,  ~) 
dr 

- ec, X (Xo ,  O) = Xo 

In the case (n, / ) =  (0, 0), (1,1), (2,0), we have A},~ )-,~(j~-~.~ . Taking 
//(~- ~,~)=0, we get from Eq. (88) that 

where 

0B(n~  ) _ g ( j , o )  
(~g U nl  (n, l ) =  (0, 0), (1, 1), (2, 0) 

[~(/ '~ (n, /)= (0, 0), (1, 1), (2, 0) 
nl  - -  n[ ~ X  ' 

Hence, we have 

BU~t.~ ~) = B~J~ ; O) + (~ [~u,o~ dr, 
nl  ~,~,  nl  1 ,~ ,  JO n[ (102) 

(n , / )=  (0, o), (1, 1), (2, 0) 

Considering the condition (12), we know that 

n(J)~Y ~ ) =  _ t~(J,O~ dr', (n, l) = (0, 0), (1, 1), (2,0) (103) 
~ n l  ~ , ~  b ' n l  

and get the initial values A(mx  0) for (n, l) = (0, 0), (1, 1), and (2, 0). nl ~ 
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7. C O N C L U D I N G  R E M A R K S  

We have shown that the improved initial layer solution is different 
from Grad's solution. We stress two main points here for distinctness. 

The first is that the secular terms have been removed in the improved 
expansion. The higher moments of the distribution function in the 
dominant terms of Grad's expansion decay as e A,zp*. If we calculate all 
terms in higher order approximations, the series will be divergent as t ~ oo. 
In fact, we have seen such a divergent series in Section 3, namely 

~ ~ ~\t~,,,C-~x j exp(-Z, , ,p 'e)  
j = O  

I 1 8p 2-1 
-- exp - ;I, ntp'c + ~ e2,,~c ~ T _l 

But in the improved solution, the higher moments decay as e ~~ If we 
neglect the difference between x and x0 in Eq. (56), we find that 

7~t.~ 2,l p ( x , O ) + - ~ e ~ ' + " ,  dr' 

In virtue of 

8p 8p 

we get 

cgp "c 2 
7~t ~ )~tp(x, O) T - 2 2,tc -~x 

This shows that, in our solution, the divergent series in Grad's expansion 
has been summed and become bounded. In his paper, Grad (z) noted that 
his expansion is asymptotic and can be used only within a finite time. Our 
improved solution is valid for any time, including t ~ oo. 

The second point is that the higher moment sound waves reappear in 
the improved solution. Actually, this conclusion follows directly from the 
requirement that the secular terms in the expansion should be removed. 
The reason the higher moment sound waves were missed in Grad's expan- 
sion is nothing but the existence of the secular terms. 

The initial layer solution can describe the relaxation of a system far 
from the state of equilibrium. We illustrate this by a simple example. 
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Suppose that an explosion in the Maxwell gas produces an initial dis- 
tribution function 

f(t=O)=(2rc)3/2(1-z2)-l/2exp 2(1_z2)  j 

where 

z =  [1 + 3  + 4 e  -r~/a s h 2 ( r / 2 6 ) ]  1 

rc>>6>e, I > A > 0  

and r is the distance from the center of the explosion. Clearly, the system 
has spherical symmetry. The initial distribution function f ( t = 0 )  tends to 
(1/2~)6(V-Vo) for r<r~. and tends to f ,  for r>r c. The condition A > 0  
ensures that the distribution function belongs to ~((. Using the method of 
the present paper with some modifications due to the different geometry, 
we can get formulas quite similar to what we obtained in Sections 1-5. By 
means of these formulas we can calculate the dependence of the heat flux q 
on time ~ according to the scheme indicated in the last paragraph of Sec- 
tion 5. For Vo=3, A =0.1, rc= 1, and 6=0.1, the results at r=0.9926 are 
as shown in Table I. Here, positive q means flux going outward from the 
center. Note that for very small ~, the heat flows toward the central part, 
where the temperature is higher. This does not contradict the second law of 
thermodynamics, because the increase of the entropy in the central part 
due to relaxation cancels out the decrease of the entropy caused by the 
negative heat flux and the total entropy of the system still increases. 
Another interesting point in this example is that a small vibration appears 
in the relaxation of the heat flux to the normal state. This vibration reflects 
the higher moment sound waves. 

The results given above show the first vibration only. In fact, the 
second vibration is very weak because it decays rapidly. It is seen from this 
simple example that the relaxation process from a space-dependent state is 
much more complicated than that from a homogeneous state. 

Table I, Dependence o f  H e a t  F l u x  q o n  T i m e  T 

r = t/e 0.000 0.016 0.05 0.20 0.40 0.60 1.20 2.00 
q/e 0.000 --0.13 0.36 7.48 15.47 18.87 20.29 20.25 
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