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On the Initial Layer Solution of
the Boltzmann Equation with Small
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We extend our method of systematic removal of secular terms in a singular per-
turbation treatment of the Boltzmann equation with small Knudsen numbers to
the initial layer. The requirement that the solution through the initial layer
should connect smoothly to the normal solution removes an ambiguity noted in
our previous paper. We show that removal of secular terms improves Grad’s
solution for the initial layer and reintroduces soundlike modes associated with
higher moments, first found by Wang Chang and Uhlenbeck.

KEY WORDS: Boltzmann equation; “initial layer”; relaxation; singular per-
turbation.

1. INTRODUCTION

Our previous paper!') was devoted to a discussion of the normal solution
of the Boltzmann equation (B.E.) with small Knudsen number. That
solution cannot be used to study the relaxation behavior in the initial layer,
the boundary layer, and the shock wave layer. In the present paper, the
initial layer solution will be discussed in detail. We again, for simplicity,
consider only the case of planar geometry. The method can be generalized
to more complicated geometries without essential difficulties.

In Ref. 1 we found that the Fourier transform in velocity space of the
B.E. for the case of planar geometry can be written as

dp . @  i(1-p’) O

. = — 1
o T YT E a2 ® (1)

! Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing, China.
2 Institutt for Teoretisk Fysikk, N-7034 Trondheim-NTH, Norway.

589

0022-4715/86/1100-0589805.00/0 ©- 1986 Plenum Publishing Corporation



590 Ding and Huang

where the generating function
@ =o(x, k, p, 1) (2)
is the Fourier transform of the distribution function f(x, v, v, t), and
J(o, (p,)zfdﬁ' dk' g(k-i', k') {cpl [g (l€+ﬁ’)—k’] ¢ [g (k— a’)+k']
- (k= K) o) G)

We use the same notation as that of Ref. 1 throughout.
We write the initial value for the generating function ¢ as

@(1=0)=poexp[ —5k%0, — ikuco (1 + o) )
where
pO:p(X, O)a Cozc(xa 0)7 HOZG(X’ 0)

Yo=2b0(x,0)e,,  (m1)=(2,2), (3, 1),.. (3)

Here the quantities ¢, are defined as

k)
e _ (=) Pu), n=0,1,.; I=nn-2,.,10r0 (6)

nl f’l!

and P,(u) are Legendre polynomials. We stressed in Ref. 1 that the ¢, are
eigenfunctions of the linearlized collision operator, and that the normal
solution

q’n:(Po[l‘f‘f(X, k’ ,Ll, t)] (7)
satisfies the B.E. (1)
d¢, . 0%, i(1—p?)d%p, 1
—2J 8
ot THakax Tk opax 2 0w )

but it does not satisfy the initial conduction (4) in general.
Assuming that the solution of Eq. (1) with the initial condition (4)
consists of two parts

O=0,+Q; 9)
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where ¢, is the normal solution obtained in Ref. 1, we obtain from
Egs. (1), (8), and (9) that ¢, must satisfy the following equation:
bp; . o, i(l-yu?) 8,

T Tk T T E dnox

1
= g [J(QD,, (pn) +J((/),,,, (pz) +J(q01’ (pl)] (10)

and the initial condition
pt=0)=0(t=0)-9,(t=0) (11)

In addition, ¢, should satisfy
p{t—o0)=0 (12)

which guarantees that ¢ becomes the normal solution ¢, outside the initial
layer. We shall call ¢, the initial layer solution.

The initial layer solution and its connection to the normal solution
was discussed by Grad,'® using the moment method. Surprisingly, he did
not find the soundlike modes pointed out already by Wang Chang and
Uhlenbeck™ to be associated with higer moments. These are sufficiently
strongly damped that their physical significance is doubtful, but the con-
ceptual discrepancy between Wang Chang and Uhlenbeck’s work and that
of Grad remains. In this paper we shall resolve this conflict: Grad’s expan-
sion will be shown to contain secular terms. When those terms are
removed, the soundlike modes reappear.

Also, the ambiguity in the coefficients of the power expansions in
Ref. 1 of the hydrodynamic variables is removed. We shall show that the
initial layer solution can only connect smoothly to a normal solution in
which the hydrodynamic variables are expanded in powers of ¢, and with
properly adjusted coefficients. If the hydrodynamic fields are expanded in
powers of ¢V *!=¢? secular terms appear in the initial layer solution. This
demonstrates the superiority of the expansion method of Ref. 1 over that
proposed by Cercignani.®

Write the initial layer solution as

©;= QoY (13)

where ¢, is given in Ref. 1 as follows:

@o=p(x, 1) exp[ —3k°0(x, t) — ikpc(x, t)] (14)
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and
Y =y(x k p, 1)
From Egs. (10) and (11) one finds that

2 y - -
el = p W) o S LI EN) 4T, )]
~e[Do + Dy($) + Da()] (15)
Wi=0)=3 [ 8905,0)~ ¥ oaipix,0) | (16)

ni =

where the symbols I(¥), J'(¥, ¥r,), £, Do, D (), D,(¢), and @) were
defined in Ref. 1.

In general, all the »{9(x, 0) do not vanish, so we have y(1=0)~ O(1).
It is seen from Eq. (15) that

oW/ot ~ O(1/¢)

which shows the rapid evolution of . In view of this, we introduce a new
time scale

T=1t/e (17)
and rewrite Eq. (15) as

0 O . , .
a_lf —pIW)=pT (W) +p 3, &LT W E9) + T (EY, )]

j=

— e[ Doy + Dy (y) + Dy(¥)] (18)
Let
b= Y = Y T b 1) en (19)
It is seen from Eqgs. (5) and (19) that
Y O(r=0)=y,
Assume that
0 © /0
5%: Z g/ <5%) (20)
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and

() 0
M: Z 8!‘/3’(1{,1') (21)
i=0

ot

where B9 depend on p, ¢, 6, and b%) (with k < j and with k = j in the case
n’ < n) and their space derivatives. Making use of Egs. (19)-(21), we get

O _ L i
(El—éLgﬁz qa, (22)

For Maxwell molecules, Eq. (18) reduces to

W W)= pIna ) 49 S &[Tl E9) 4 Tag(E9, )]

ot P
—e[ Doy + Dy (¥) + Da(¥)] (23)

We shall consider mainly Maxwell molecules.

2. THE DOMINANT TERMS OF THE “INITIAL LAYER”
SOLUTION

Substituting Eqs. (19) and (22) into Eq. (23), we find that the ¢°-order
approximation to Eq. (23) is

(%) — pI (Y @) = pJ (Y@, ) (24)
0

Equating the coefficients of e¢,, on both sides of the above equation, we
obtain

B+ 2,4pb9 = R (25)
where
RP=p Y bOIbOLH" (26)
n'in"l”

and the coefficients h%/"""" have been defined in Ref. 1.

It should be noticed that RY depends only on ) for n' < n because of
the properties of A7/"'". Hence, we may determine all 59 from Eq. (25)
one by one as long as 9% have been defined. In fact, the form of Eq. (25)
is quite similar to that of the moment equations of the B.E. for Maxwell
molecules in the spatially homogeneous case, where one can evaluate the
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time evolution of subsequent moments by solving ordinary differential
equations.® If we retain only the first term on the right-hand side of
Eq. (21), we find that Eq. (25) is exactly the spatially homogeneous B.E.

3. THE ¢-ORDER APPROXIMATION

The e-order approximation to Eq. (23) is
(5 ) 1y = oL ) Sy )]
+ o[, D)+ T (€D, )]
— [Doop + Dy (¢™) + Dy ()] (27)

Equating the coefficients of ¢,, on both sides of the above equation, we
obtain
B + Bt + Aupbly
n(l+1) 06, oby

=~ T 20+3 ax ¢ ox

(n—1+2)1 3O, )
ni L 28
EERVT ISy (28)

where

1) 0 1 1 ‘I'n"l"
W=2p T BObW)+alth) L

G

1 00 / I+1
*5”(”— 1)(n—2) ga (5[-——1 by 5y +mb§0)3,z+1>

de I(1—1)
Can—nyel| T po
n(n )Oax[(2l—1)(2l—3)b”‘2”2

WD)
32— 1)20+3) "
U+ DU+2)
(214 3)(21+5) "2
nl b O nﬁﬂ[l(n—l) .

'21—19 ox  206x| 20—1 nuiot
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2143

de ((n—1+2)(1-1)1
__{ (2I—1)(21=73)

[(n—l)(1+1)2 (n+i+1)7P ]b“”
1+ 1)(21+3) -2+ |7
U+2Ml+1ﬂn+l+3)mm }

(214 3)(2/+5) w2

(n—1+2)1 10pb
C(n+ (2= 1) pox AR
U+ D(m+I1+3)1 8

T )I+3) pax POt

(+Dr+l+1) ]
L,/+1

o
b s

(29)

If one puts V=0, which is equivalent to Grad’s expansion, the
right-hand side of Eq. (28) may be considered as the inhomogeneous terms
of the differential equation for 5{). Considering 59 ~ e ~***" we know that
the right-hand side of Eq. (28) will contain a term

ob® 0 :
a"/ ~Th,C % e APt
X

ox

and b}’ will contain a term

1 . Op\ .
3 72 </t,,,c a) e Half

At the next step b2 will contain a term

it ap\?
—— (i .cE —Anipt
24 ( e 6x) ¢

and it can easily be inferred that ¢ will contain

,CZj ap J .
<2j>!!<*”""5§> e

which leads to a secular term. In fact, the sum of those terms is

1 0
exp <—/1n,pr +§ 8A,,C Epc r2>
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Clearly, the absolute value of the second term in the exponent will be
larger than that of the first when t is large enough. In order to remove such

secular terms, we have to choose 1) carefully.
In the case /#0 and 1, we may put

B = —c abyex
B+ Zpbly) = R

where

_n(l—i—l)gabf,oll,zﬂ_ (n—1+2)1 abizo-})—],l—vl_‘_ )

R —
" 2143 dx (n+1)2/—1) ox "

If /=0 or 1, n >4, degeneracy occurs:

j‘n,O = An71,1
We may put
ob® n opV) n 00
0,1) — _ LAV n—11_"¥¥ 5(0)

Bl “ox 39 ox éaxb”’“
0b® obl 1 /06 o6

oy . _ . n-tt Z7n0 - 77 _— (0)

Bt “Tox ox 29<6t+cax> bnz i

(30)

(31)

(32)

(33)

(34)

(35)

The last terms in the above equations are introduced for convenience in
solving b{%} and b, (see below). From Egs. (28), (34), and (35) we

obtain
BU + Ao pblig = RY
ﬁ;l’—oh + ln,opbﬁfl 11= R 1,1
where
n oo
R{}= S ox b, + B
2(n—1) b 1 /00 00
I e T Cage) LIy

(36)

(37)

(38)

(39)
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4. HIGHER ORDER APPROXIMATIONS
The higher order approximation to Eq. (23) is (j>2)

0 .
(57), -ptutv

=p ]i [T, EV= N b T (EY =5, )]

7 ) o ) )
+p Z JM(‘//(l)a ‘ﬁ(]ﬂ))_ [D01‘P(172)+D00‘//(j_1)

i=0

+D,(yU )+ Doy )]
the e,, component of which is

J
Y BT+ Aupbl
i=0

1) obgmy,, dby Y

2143 Ox ox
(n—1+2)1 abz(qj:1{1)~1+

_ )
(n+1)2I—1) ox "
where
j—1
. e
Bp=20% Y bWhafsomyin
i=0 n'l'n"t”
j . . . ,[( s
+p Y ) bUbY ke
i=0 n'l'n"l"

21 2U13

/ . I+1 1 )
| g L g B | gt 1) 5,89

1 o9 , A
~§n(n—1)(n~2)95—[ ! bflf:31,l)_1+l+1b(1~1)

x| 2—1 2043 "l

dc I(1—1) . 2(1+ 1)
—nh—-1 =] — > 1 pU-1 ek W e
n(n )c’?x[(21—1)(21—3)b”‘2”‘2+3(2l—1)(2l+3)

(x10+2)

(21+3)21+5) ">

_In gabrgj:l{)—l_f.a_e be.j:fl)ll
2—-1" ox  20x|21—1 "%

822/45/3-4-16

597

(41)

j— 1
by
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U+ Dnt+i+l), ;) ]
2l+3 n—1,/+1

dc ((n—I1+2)I—1)1
‘a{ (21— 1)(21—3)

[(n—l)(H—l)z (n+14+1) 7 ]bu_n
QI+D)Q2I+3)  @-1D)RI+1) ™

420+ Dn+143)
(21+3)(21+5) mit2
_ n=I+2)1 1dp,
(n+1)2—1)pax "+4-1
I+ Dm+I+3)1 0

- j—1)
T DA 13) pax PO

i—1
by

In order to remove secular terms, we put
0/) = QUJ=D — ... — BU—22)
Bl =B~ = " =By 2 =0

In addition, we put

=1
gy = —c L
" dx

o
BY + Fupby) = RY

Ry M) BbYT) M- 1+2) 0bYY

"3 ox (n+1)2[—1) ox

+ B

for [#0 and 1; and put

bl neﬁb}j:ﬂl’ n o

-1 _ _z (1)

Bro “Tox 3" ox  6ox nou
GbU-11 BU-D 1 /30 0\

G-t = Ot Zno i pU—1)

Bizia’ = =% ox ze(a:“w) !

ﬂfz{f)O) + ’an pbf{é)) = Rr(1{))

o . )
Be )1,1 + A0pb) L= R;(fl 1,1

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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for /=0 or 1, n>=4, where

n 06
R;g):g_a by 1{+gm
2(n—1) 0bY—1) ilv} 06 1)
. n— J
RU) = _ g 22 by~ 1) (1)
i1t 5 x 0<8t+cﬁx> R
Thus, Eq. (21) becomes
bW _ ,
3%=ﬁgm+w%% j=0,1,. (52)

which is an exact equation for »{J.
Solving Eq. (52) is not very difficult. If /#0 and 1, Eq. (52) becomes

9 obW) .
BT oty DI ) gt ) 1) = RG (53)

o +ec(x, 1)
The characteristic curves of Eq. (53) are determined by
dx/dr =¢ec(x, 1) (54)

Denoting x(t=0)=x,, we obtain from Eq. (54) that x=x(xy, 1) for a
given x,, and the inverse function x, = x4(x, 7) follows. Hence, the solution
of Eq. (53) is

bU(x, r)*b(f)(xo,O)e Vn/_i_e“?nlf ey'y”R,(,j/')(X(XO,T'), ) de’ (55)

where
(%0, 7) = A [ plxtxe, 7)) (56)
Vo = Vil X0, T) = ln; P(x(xo,f ), T7) dt” (57)

If /=0 or 1, n>4, Eq. (52) becomes
obY) b} oy oby ,  &ndf

& T T3 Tx e

— b+ Aopb) =R (58a)

or
opw P18 bW
n—1,1+8c n71,1+8 n,0
ot Ox Ox

6 40 |
+28_9(§,‘+ x>b(”11+inopb“’, =RY |, (58b)
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Denoting
1/2

. L (nO\ A . (n0 .
= —(%) b ba=sge(F) B O9)

we can rewrite Eqs. (58) as two independent equations:

obW 0 1/2 obW ) )
5j+w[c«(%) ] 5%+ dapbP = R (60)
) 0\ 127 b ) _ .

625+6%%(%> } 2 dopblf) = RY) (61)

where

. . N . A AN
Ry =ry-(5) RO RE=RE+(F) RO, @

Equations (60) and (61) can be solved exactly in a way similar to solving
Eq. (53). The characteristic curves of Eq. (60) are given by

_ 1/2
@%’—ﬂ:s[c-@) ] x(xg,0) =g (63)

If x5 =x; (x, 7) is determined from the solution of Eq. (63), the solution of

Eq. (60) will be

b = b (x5, 0) e~ 7 + et j O RY (x(xg, 7'), T) e (64)
0

where
n,=AmLpuuaxmrwm' (65)

Voo =Va- (X0 T) = Ao L p(x(xq,1"), ") dt” (66)

The characteristic curves of Eq. (62) are given by

¥ 172
%ﬁzg[H(ﬁ;ﬂ) ] xX(xg5 0)=xg (67)

If x¢ = xg (%o, 7) is determined from the solution of Eq. (67), the solution
of Eq. (61) will be

bY) =b)(xd,0)e M+ 4o J(: eVﬁRgf}L (x(xg, ), T)dt’  (68)
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where

Yo = || Px(x5 7). 7) (69)

Vot =V (X5 T) = Ang \ p(x(xg, "), 7") dr” (70)

Finally, we obtain from Egs. (59) that

I R 4 4 L/3N"2 _
bh=5 02 +og b0 =3 (o) B -b) )
It is very easy to see from Egs. (63) and (67) that the high-moment
sound waves do appear in a Maxwell gas and propagate with speed
(n6/3)"2. But they decay very rapidly because of

Zn021n71,1>0

This fact was noticed by Wang Chang and Uhlenbeck.®’ As mentioned in
the introduction, in Grad’s solution the high-moment sound waves were
missed, because the secular terms were not removed.

5. THE CONNECTION WITH THE NORMAL SOLUTION
According to Eq. (12), we know that 5 should satisfy

lim b4(x, 7)=0 (72)

It is evident that Eq. (72) is satisfied for (n, [} = (2, 2), (3, 1),..., because of
the factor exp(— 4 jg p dt'). It is seen from Egs. (16) and (19) that

bif(x,0)= —aif(x,0),  (n,0)=(0,0), (1, 1),..; j=1,2,.. (73)

The initial values of p, ¢, and 8 are given in the normal solution. As soon
as values of a'/X(x, 0) for (n, [)=(0,0), (1, 1), (2, 0) are given, that of all
other a$)(x, 0) will be defined as explained in Ref. 1, and 5{)(x, 0) for
(n,1)=1(2,2), (3, 1),..., will be determined by Eq. (73).

The situation is different for the first three moments (n, [} = (0, 0),
(1, 1), (2,0). Let us consider Eq. (28) as an example. In view of

/loozfln =/120=0

the secular term would appear if {1 contained a term without any factor
like exp(—4 {§ p dt’). (For instance, if B4 contained a term that remained



602 Ding and Huang

constant, 53> would contain a term proportional to t.) But the right-hand
side of Eq. (28) has no such term, so we may put

BiY = BiSY = BN =0 (74)
Similarly, we may retain Eq. (43) and put
B0 =BY =By =0,  j=1,2,.. (75)
Then Eq. (21) becomes
obyp . ; )
—a”—z B9, (n,)=1(0,0),(1,1),(2,0); j=0,1,. (76)

In the case j=0, we know from Egq. (5) that b{(x, 0)=59(x,0)=
b (x, 0)=0. We obtain from Eqgs. (25) and (76) that

b®(x,1)=0, (n, [)=1(0,0), (1, 1), (2,0) (77)

In the case j=1, in virtue of Egs. (28) and (75), we may write Eq. (76) as
ob&y) 0 obiy) 10

En 8 pw 0 Ox (pb%2),
o (78)
6b20 _—30 (pb (0))_z@b<0)
ot 9p ox 30x
Hence, using Eqgs. (78) and (73), we get
bid(x, 1)= —ald)(x, 0)
b, 1) = —alD(x )—J L9 o) e
11 H s a 22 (79)
5 0 dc
b (x 1) = —aff(x, 0)~ | = 5, 3 (PP & —gL — b dr
According to Eq. (72), we have to put
alP(x,0)=0
o1 9
M(x,0)= —| == (pb)dr’
((x, 0) jo S ) (30)
1 0 dc
() O dr' — 2| ZZpo) gt
ay)(x, 0) = 9 p x (pbS§Y) dr 3 L ox b3 dt
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In the case j> 2, the procedure is similar. It is seen from Egs. (41), (43),
and (75) that

A b~ 1 0
U0 = _¢ ——— (pb{i—V

Bt ax 0 ox (p )

. obY~Y  opYy~Y . obs—h  oc ..
ﬁﬁ’fo):“*c——gx——%——%béé Pl — by~

_légb(/ l)mli(pb(z ) (81)
p Ox p 0x

. 2 dpY~v  apimb 2 . . a0

g = 20T B 2 bbb
2 dc

, 5 0 )
L (pli—1 U=y .~ (phU—1
3 ox (b5~ U+ b3~ ") 9p ox (b5~ ")

Hence we obtain that the solution of Eq. (76) under the condition (72) is

bi(x, 1) = ~f Y d

(82)
(n,1)=(0,0), (L, 1),(2,0); j=2,3,.,
and the initial value of a'/)(x, t) for (n, /)= (0, 0), (1, 1), (2, 0) is
foo
x,0)=| BYo ar
711 ( ) J :Bn[ (83)

(n, )=1(0,0), (1, 1),(2,0); j=2,3,.

We mentioned in Ref. 1 that several coefficients in the normal solution,
such as a{(x,0) for (n, [)=(0,0),(1,1),(2,0), j=1, 2,3,., remained
undetermined. Now we find that these coefficients are determined by
Eqgs. (80) and (83) in order to satisfy the condition (72). In other words, if
we take initial values of a{/)(x, r) that do not agree with Egs. (80) and (83),
the solution ¢ will not tend to ¢, outside the initial layer. This is another
kind of secular term, which can cause the initial layer solution to be
invalid. In order to avoid this type of secular term, we are forced to expand
the hydrodynamic variables in a power series in e. In other words, we need
the counterparts of 6§, b{}, and bY) (j=1,2,..) in the normal solution.
However, we cannot find the counterparts for j=1, 3, 5,..., in Cercignani’s
expans1on since the hydrodynamic variables there are expanded in powers
of &> even though each term is dependent on & As mentioned in the
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introduction, this is the second difference between Cercignani’s normal
solution and that presented in Ref. 1.
Finally, we summarize our procedure as follows:

1. Find bQ(x, 1), bQ(x,7), and bP(x,7) from Egs. (77), and
evaluate other b9(x, t) from Egs. (55), (64), (68), and (71) for j=0.

2. Evaluate b{J(x, 1), b{}(x, 1), and b{{)(x, t) from Egs. (79), and
other bM(x, t) from Egs. (55), (64), (68), and (71), and the initial values of
af(x, 1), ai(x, t), and aly(x, 1) from Egs. (80) for j=1.

3. Evaluate b{J(x, 1), b{{(x, ), and b{)(x, 7) from Eqs. (82) and (81),
other 6{)(x, t) from Egs. (55), (64), (68), and (71), and the initial values
afi)(x, t), al{(x, t), and a¥§(x, t) from Eqs. (83) and (81) for j=2.

4. Evaluate

a(x, t)= Z [aP(x, 1)+ bYP(x, )] &’

which determines the hydrodynamic variables, by the formulas given in
Ref. L.

6. EXTENSION TO NON-MAXWELL MOLECULES

The situation for non-Maxwell molecules is more complicated. The
fact that in the preceding paragraphs we could work our way recursively
through the initial layer to an arbitrary initial condition was due to the
special simplifying features of the Maxwell model. In order to get explicit
results for non-Maxwell molecules, we must restrict ourselves to initial con-
ditions sufficiently close to a local Maxwell distribution that linearization
makes sense. In that case, the discussion can be made quite similar to that
above.

The real, symmetric operator I in Eq. (18) can be diagonalized

I(dnl) = —Anl dn/ (84)

where

( )

nl_anlenl_ZDn[ P (1) (85)

In general, the eigenvalues A,, and the eigenvectors d,, are dependent
on 8. We know from Eqgs. (111) in Ref. 1 that

doo = €oo> d=ey, dro = €29, A=A, =4,0=0 (86)
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All other eigenvalues 4,,>0. We assume that there is no more degeneracy
in the spectrum of the operator /.

Letting
W= Z ’l//“)— Z 8123(])()(: ) (87)
BW _ _
%’cﬂi/f‘)’ﬂﬂzf” (38)

we obtain from Eq. (18) that the 4, component of the ¢%order
approximation is

ﬂz(;,O) + AanB( =p Z B(O)BI(IOI) nln[ (89)
n'li'n"i"
where H"/"" are defined by
_[J,(dnla nl)+Jl(dnl> nl)] ZHn/n[ dn( (90)
nl

It is easy to get

wi'n"l" __ pgn'l'n"l" __ pyn'ln"l’ _. n'l'n"l" n'l'nl
HOO _Hll ~H20 _0’ H Hn/

nl

(91)
H/" =0 if ['=0"|>] or I>I+1"
The d,, component of the g-order approximation to Eq. (18) is
B® + Bt + Aup By
=20 Y BO(AL)L + BULL) HI
a'l'n"l"
—[du, Dp©1-C 0B,y (92)

0x

where [d,,, ¥ ] denotes the coefficient of d,, in ¥, A denotes the coef-
ficient of d,, in ¢, and
2 i(l—p)

J .
DmEDoo‘*‘Dz‘l‘Pena“*“l#akax'i‘ Kk opox (93)

The difference between the non-Maxwell gas and the Maxwell gas is
that closed equations for B}’ cannot be obtained even though the
expression of f-" in Eqgs. (88) and (89) is determined, because the H"/"""
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do not necessarily vanish when n<n' + n”. But if the deviation of the initial
distribution from a local Maxwellian distribution is small, for example, if

Yo is O(e),
Yo=eYo
we can obtain from Egs. (4) and (5) that
Yy O(r=0)=0

Y (e =0)= o — (1 =0)
YyP(1=0)= =1 =0), =2

Taking -1 =0, we get
=0 (94)
and we get from Eq. (92) that
BL® + AupB) =0 (95)

The d,, components of the ¢/-order approximation to Eq. (18) for j =2 are

. ) ) dBY—Y X
B+ B+ AypBf = —c H— 4t RY (96)
where
i—1
Ry=2p T T BOAUOHI
i=1 n'l'n"l"
j—1 _ »
+p Y T BBy HI
i=1 n'l'n"l"
—[du, D,y V1=1[d,, Doy~ ] (97)

In the case (1, 1) # (0, 0), (1, 1), (2, 0), letting

. 3By~
B = —e (98)
BYO + AupBY = RY (99)

we obtain from Eq. (88) that

OB OBY) _ ,
5o =Ry (10)
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The solution of Eq. {100) is

7 ’ .
BY = BY)(x,, 0) e 4o L R (x(xo, T'), 7') dF

where

V= Ay L p(x(xo, '), ") dt’

V;HE an('x07 I’) - An/ J‘O p(x(xO’ T”)’ T’/) dTN

Here x,=x,(x, t) is determined by the following equation:

dx(xq, T)

. &c, x(xq, 0)=x,

In the case (n,1)=(0,0), (1,1), (2,0), we have AY =a{).

BY-tD=0, we get from Eq. (88) that

0B
ar nl

where

B =Ry —c—t—.  (n.1)=(0,0),(1,1),(2,0)

Hence, we have

B, )= B 0)+ [ B dv

0

(n,1)=1(0,0), (1, 1),(2,0)

Considering the condition (12), we know that

B, o) =—| pyde,  (n1)=(0,0) (1,

——('£=,3(j’0)’ (n,)=1(0,0), (1, 1), (2,0)

607

(101)

Taking

(102)

(103)

and get the initial values 4\(x, 0) for (n, {)=(0,0), (1, 1), and (2, 0).
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7. CONCLUDING REMARKS

We have shown that the improved initial layer solution is different
from Grad’s solution. We stress two main points here for distinctness.

The first is that the secular terms have been removed in the improved
expansion. The higher moments of the distribution function in the
dominant terms of Grad’s expansion decay as e ", If we calculate all
terms in higher order approximations, the series will be divergent as ¢ —» co.
In fact, we have seen such a divergent series in Section 3, namely

2.

© ap J
; o Ca exp(—4Anp1)
= exp l: AT+ = ! si,,,c op "‘]
Ox

But in the improved solution, the higher moments decay as ¢ 7. If we
neglect the difference between x and x; in Eq. (56), we find that

® 0
Vot = At L [p(x, 0) +a—/t) et + :l dv’

In virtue of

ap op
'&"‘{‘Ca—

we get

3 op
A 0)t—=Ac—1°
Vut nlp(xﬂ ) T 2 ni€ ax T

This shows that, in our solution, the divergent series in Grad’s expansion
has been summed and become bounded. In his paper, Grad® noted that
his expansion is asymptotic and can be used only within a finite time. Our
improved solution is valid for any time, including ¢ — oo.

The second point is that the higher moment sound waves reappear in
the improved solution. Actually, this conclusion follows directly from the
requirement that the secular terms in the expansion should be removed.
The reason the higher moment sound waves were missed in Grad’s expan-
sion is nothing but the existence of the secular terms.

The initial layer solution can describe the relaxation of a system far
from the state of equilibrium. We illustrate this by a simple example.
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Suppose that an explosion in the Maxwell gas produces an initial dis-
tribution function

f(t=0) _ (271)3/2 (1 _Zz)—l/z exXp [— %(_1‘%)%]

where

z=[1+A4+4e " sh2(r/25)]

r.»o>e, 1»>4>0

and r is the distance from the center of the explosion. Clearly, the system
has spherical symmetry. The initial distribution function f(r=0) tends to
(1/27) 6(v —vy) for r<r, and tends to f, for r>r,. The condition 4>0
ensures that the distribution function belongs to 4. Using the method of
the present paper with some modifications due to the different geometry,
we can get formulas quite similar to what we obtained in Sections 1-5. By
means of these formulas we can calculate the dependence of the heat flux ¢
on time 7 according to the scheme indicated in the last paragraph of Sec-
tion 5. For vo=3, 4=0.1, r,=1, and § =0.1, the results at r=0.9926 are
as shown in Table I. Here, positive ¢ means flux going outward from the
center. Note that for very small 7, the heat flows toward the central part,
where the temperature is higher. This does not contradict the second law of
thermodynamics, because the increase of the entropy in the central part
due to relaxation cancels out the decrease of the entropy caused by the
negative heat flux and the total entropy of the system still increases.
Another interesting point in this example is that a small vibration appears
in the relaxation of the heat flux to the normal state. This vibration reflects
the higher moment sound waves.

The results given above show the first vibration only. In fact, the
second vibration is very weak because it decays rapidly. It is seen from this
simple example that the relaxation process from a space-dependent state is
much more complicated than that from a homogeneous state.

Table |. Dependence of Heat Flux g on Time T

T=1/g 0.000 0.016 0.05 0.20 0.40 0.60 1.20 2.00
qg/e 0.000 —0.13 0.36 7.48 15.47 18.87 20.29 20.25
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